martes, 10 de marzo de 2015

TEOREMA DE BAYES

En la teoría de la probabilidad el teorema de Bayes es un resultado enunciado por Thomas Bayes en 1763 que expresa la probabilidad condicional de un evento aleatorio Adado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.



1El 20% de los empleados de una empresa son ingenieros y otro 20% son economistas. El 75% de los ingenieros ocupan un puesto directivo y el 50% de los economistas también, mientras que los no ingenieros y los no economistas solamente el 20% ocupa un puesto directivo. ¿Cuál es la probabilidad de que un empleado directivo elegido al azar sea ingeniero?
árbol
solución

2La probabilidad de que haya un accidente en una fábrica que dispone de alarma es 0.1. La probabilidad de que suene esta sí se ha producido algún incidente es de 0.97 y la probabilidad de que suene si no ha sucedido ningún incidente es 0.02.
En el supuesto de que haya funcionado la alarma, ¿cuál es la probabilidad de que no haya habido ningún incidente?
Sean los sucesos:
I = Producirse incidente.
A = Sonar la alarma.
árbol
solución

APLICACION DE PROBABILIDAD CONDICIONAL


PROBABILIDAD CONDICIONAL


Se refiere a la probabilidad de ciertos eventos (A) que dependen o se ven influidas por la ocurrencia de otros (B). La probabilidad condicional se representa P(A|B), y el cual se pronuncia como "la probabilidad de A dado en B"
Para determinar la probabilidad condicional se recurre a la siguiente formula:



EJERCICIOS RESUELTOS SOBRE LA PROBABILIDAD CONDICIONAL

1.- Se seleccionan dos canicas aleatoriamente, una por una, de una pequeña caja que contiene 10 canicas rojas y 5 transparentes. ¿Cuál es la probabilidad de que:
a) La primera canica sea roja?
b)La segunda canica sea transparente dado que la primera fue roja?


  
SOLUCIÓN

a)  La probabilidad de que la primera canica sea roja es 10/15, puesto que hay 10 canicas rojas de un total de 15. Escrito con notación de probabilidad tenemos: P(R)=10/5.

b) La probabilidad de que la segunda canica sea transparente se ve influida por lo que salió primero, es decir esta probabilidad está sujeta a una condición, la de que la primera canica sea roja. Este tipo de probabilidad se le llama probabilidad condicional y se denota por  P(T|R), y se lee: la probabilidad de T2 dado R1. Esta probabilidad  P(T|R)=5/14, puesto que todavía hay 5 canicas    transparentes en un total de 14 restantes.




2.-Una persona lanza una moneda 3 veces, ¿Cuál es la probabilidad de obtener 3 águilas dado que salió por lo menos un águila?


SOLUCIÓN


El espacio muestra del experimento de lanzar una moneda 3 veces es
S = {aaa, aas, asa, ass, saa, sas, ssa, sss}El evento A de que por lo menos hay un águila en los tres lanzamientos es:
A = {aaa, aas, asa, ass, saa, sas, ssa}El evento B de que obtenga 3 águilas es B = {aaa}Por lo tanto, A
ÇB ={aaa} y P(AÇB)=1/8 y P(A)=7/8
De donde:







3.-Dos personas eligen al azar, cada una de ellas, un número del 0 al 9. ¿Cuál es la probabilidad de que las dos personas no piensen el mismo número?


SOLUCIÓN

Para calcular la probabilidad se supone que el primero ya ha elegido un número, entonces se calcula la probabilidad de que el segundo no escoja el mismo número: P=10/100=1/10=0.1; por lo tanto la probabilidad de que no piensen en el mismo número será 1-(1/10)=9/10=0.9





APLICACION DE LA REGLA DE LA MULTIPLICACION DE LA PROBABILIDAD

Ejemplo
1(Inspección de Lotes)
Un lote contiene $100$ items de los cuales $20$ son defectuosos. Los items son seleccionados uno despues del otro para ver si ellos son defectuosos. Suponga que dos items son seleccionados sin reemplazamiento(Significa que el objeto que se selecciona al azar se deja por fuera del lote). ¿ Cúal es la probabilidad de que los dos items seleccionados sean defectuosos?.
Solución
Sea los eventos
MATH
entonces dos items seleccionados seran defectuosos, cuando ocurre el evento $A_{1}\cap A_{2}$ que es la intersección entre los eventos $A_{1}$ y $A_{2}$. De la información dada se tiene que:
MATH MATH
así probabilidad de que los dos items seleccionados sean defectuosos es
MATH
Ahora suponga que selecciona un tercer item, entonces la probabilidad de que los tres items seleccionados sean defectuosos es
MATH

APLICACION DE LA REGLA DE LA ADICION DE LA PROBABILIDAD

Regla general de la adición de probabilidades para eventos no mutuamente excluyentes
Si A y B son dos eventos no mutuamente excluyentes (eventos intersecantes), es decir, de modo que ocurra A o bien B o ambos a la vez (al mismo tiempo), entonces se aplica la siguiente regla para calcular dicha probabilidad:

1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Monografias.com
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
Monografias.com
2) En una urna existe 10 bolas numeradas del 1 al 10. ¿Qué probabilidad existe de sacar en una sola extracción una bola enumerada con un número par o con un número primo?
Solución:
Monografias.com


un número divisor de 9.

EJERCICIOS APLICANDO EL CONCEPTO DE PROBABILIDAD CONJUNTA

1.-La probabilidad de sacar dos lápices negros es:
P=(2/5)(1/4)
P=2/20
P= 1/10


2.-En una tómbola hay 3 bolas rojas y 5 blancas. Se extraen unaa una y sin reposición, dos bolas. La probabilidad de que ambas resulten rojas es:
Solución:
Los eventos de extracción son independientes, por lo tanto, la probabilidad pedida
será el producto de cada una de las probabilidades individuales. La 1º extracción tiene 3 casos favorables de untotal de 8 bolas. La probabilidad es 3/8. La 2º tiene 2 casos favorables de un total de7 bolas que quedan. Su probabilidad es 2/7  Así, la probabilidad pedida es
P=(3/8)(2/7)
P=(3/4)(1/7)
P=3/28


3.-Desde una tómbola en la que sólo hay 5 bolitas, 2 negras y 3 rojas, se extraen dos, de una en una y sin reposición. Entonces, la probabilidad de que ambas resulten negras es:
Solución: Los eventos de extracción son independientes, por lo tanto, la probabilidad pedida será el producto de cada una de las probabilidades individuales. La 1º extracción tiene 2 casos favorables de un total de 5 bolas. Su probabilidad es 2/5. La 2º extracción tiene 1 caso favorable de un total de 4 bolas que quedan. Su probabilidad es 1/4 .Así, la probabilidad pedida es
P= (2/5)(1/4)
P= (1/5)(1/2)
P= 1/10


4.-En una urna hay 10 fichas blancas y 5 azules. La probabilidad de que, de dos fichas extraídas una tras otra sin devolución, la primera ficha sea blanca y la segunda sea azul es:
Solución:
Sea B ≡La primera ficha sea blanca.
        A ≡La segunda ficha sea azul.
La probabilidad pedida es P (B) •P(A) ,(casos favorables/casos totales), así:
P (B)*P(A)
P= (10/15)(5/14)
P= (5/3) (1/7)
P=5/21


5.-Se extraen dos cartas de una baraja española, una después de la otra sin devolución. La probabilidad que la segunda cartasea un rey, dado que la primera carta fue rey de bastos es:
Solución:
La baraja española consta de 4 reyes en 40 cartas. Después de la 1era extracción quedan 3 reyes en un total de 39 cartas. Entonces, la probabilidad pedida es
P=3/39
P=1/13


6.-Si Pedro tiene un llavero con 4 llaves y solo una de ellas abre una puerta. ¿Cuál es la probabilidad de que si prueba las llaves, logre abrir la puerta al tercerintento sin usar una llave más de una vez?
Solución:
En el primer y segundo intento falla, por lo que hay que considerar solo como casos favorables aquellos en que la llave no es correcta. En el tercer intento hay que considerar como caso favorable únicamente el caso en que la llave es correcta. Como además no se repite ninguna llave, de un intento a otro habrá una llave menos. La probabilidad pedida es:
P(abre 3º intento) =
P(falla en 1º intento) •P(falla en 2º intento) •P(acierta en 3º intento)
P(abre 3º intento) = (3/4)(2/3)(1/2)
P(abre 3º intento) = 6/24
P(abre 3º intento) = 1/6


7.-De un naipe de 52 cartas se extraen consecutivamente 2 cartas al azar, sin restitución. ¿Cuál es la probabilidad de que la primera sea el as de trébol y
la segunda sea un 4?
Solución:
Sea los eventos
A ≡extraer un as de trébol de un mazo de 52 cartas
  P(A) = casos favorables hay un solo as de trébol/ casos totales hay 52 cartas en total 1
P=1/52
extraer un 4 de un mazo de 51 cartas.
 P(B) =casos favorables hay cuatros naipes con número 4 / casos totales Quedan
  P(B) =(1 por cada pinta) 4/51 cartas en total
La probabilidad pedida es:
P(A) •P(B) = (1/52)(4/51)


8.-Se toman una a una y sin reposición, cinco cartas de una baraja de 52. ¿Cuáles la probabilidad de que las cuatro primeras seanases y la última, reina de diamantes?
Solución:
Cada extracción es sin reposición, por lo que la cantidad de cartas (y particularmente ases), va disminuyendo de una en una. Además, cada extracción es independiente. La probabilidad pedida viene dada por:
P=(4/52)(3/51)(2/50)(1/49)(1/48)
P= (4! 4!• 47! 4!)/( • 51• 50 • 49 • 48 • 47!)
P= 4•7!/52!


9.-La cardinalidad del espacio muestral, o el número de casos posibles que hay, al extraer 4 cartas de un total de 52, viene dada, sin importar el orden en que se extraen, por:
P(Diez) = 4/51
P(Diez)=(4/52)(4/51)
P=(1/13)( 4/51)
P=4/663
La cardinalidad del espacio muestral, o de casos posibles que hay, al extraer 1 carta de las 48 restantes viene dada, por:
P(As) = 4/52
P(Diez) = 4/52
P(Diez) = 4/5151


10.- En una tómbola hay 3 bolas rojas y 5 blancas. Se extraen unaa una y sin reposición, dos bolas. La probabilidad de que ambas resulten rojas es:
Solución:
Los eventos de extracción son independientes, por lo tanto, la probabilidad pedida será el producto de cada una de las probabilidades individuales. La 1º extracción tiene 3 casos favorables de un total de 8 bolas. La probabilidad es 3/8. La 2º tiene 2 casos favorables de un total de 7 bolas que quedan. Su probabilidad es 2/7 .Así,
la probabilidad pedida es : (3/8)(2/7)=( 3/4)(1/7)=3/28

EJERCICIOS APLICANDO LA PROBABILIDAD SIMPLE

1.-
Si yo tengo una canasta llena de peras y manzanas, de las cuales hay 20 peras y 10 manzanas. ¿Qué fruta es más probable que saque al azar de la canasta?

Para este ejemplo tenemos que 30 es el total de frutas en la canasta; es decir los casos posibles. Para calcular la probabilidad de sacar una manzana mis casos favorables son 10 puesto que existen sólo 10 manzanas. Así, aplicando la fórmula obtenemos que:

P(Manzana)=10/30=1/3= 33.3% probable

Calculando igual, la probabilidad de sacar pera es:

P(Pera)=20/30=2/3= 66.7% probable

Como 66.7 es mayor que 33.3 es más probable que saque una pera, pues hay más peras que manzanas en la canasta.

2.- 
La probabilidad de que al lanzar un dado, salga el numero 2 es de 

1/6

porque el dos es solo uno de 6 numeros que hay en total.

3.-
En una sala de clases hay 20 mujeres y 12 hombres. Si se escoge uno de ellos al azar. ¿Cuál es la probabilidad de que lapersona escogida sea hombre? 
Solución:
Por definición, la probabilidad de que un suceso ocurra viene dada por: 
P=casos favorables/casos totales o posibles (P).
En particular, hay 12 hombres, por lo tanto son 12 los casos favorables a dicha selección. Pero ella se hará de un total de 20 + 12 = 32 personas sumamos la cantidad de mujeres y hombres que forman parte de la selección y por tanto, los casos posibles o totales.
Así, la probabilidad pedida es 
P= 12/32

4.- 
En una comida hay 28 hombres y 32 mujeres.Han comido carne 16 hombres y 20 mujeres, comiendo pescado el resto. Si se elige una de las personas al azar. ¿Cuál es la probabilidad de que la persona escogida sea hombre? 
Solución: 
La información sobre lo que come cada una de las personas es insustancial. Pues en lo que solicita no hay relación con ello. Por definición, la probabilidad pedida viene dada por:
P= casos favorables a la selección 28/casos totales de la muestra 60
P= 28/60

5.-
En un curso de 30 alumnos 18 son mujeres. ¿Cuál es la probabilidad de que al escoger una persona está no sea mujer? 
Solución: 
Claramente nos piden la probabilidad de que al escoger una persona, esta sea hombre. Pues bien, si de los 30 alumnos, 18 son mujeres, entonces hay 12 hombres. Luego, la probabilidad pedida es: 
P=casos favorables a la selección 12/casos totales de la muestra 30
P=12/60

6.-
¿Cuál es la probabilidad de ganar en una rifa de 1000 números en total, si se compran los 3 centésimos de tal cantidad? 
Solución: 
3 Centésimos equivale al 3%. Y la probabi
lidad asociada a tal porcentaje es 3/100. 
P= 3/100

7.-
La probabilidad de que al sacar una carta al azar de un naipe inglés (52 cartas), ella sea un as es: 
Solución: 
Los casos favorables a obtener un as son 4. 
Los casos totales o posibles de extraer son 52 (puede salir cualquier carta). 
Por lo tanto, la probabilidad pedida es: 
P=4/52 
P=1/13

8.-
En un jardín infantil hay 8 morenos y 12 morenas así como 7 rubios y 5 rubias. Si se elige un integrante al azar, la probabilidad de que sea rubio o rubia es: 
Solución: 
Hay un total de 32 niños. Los rubios o rubias suman 12. Por lo tanto, la probabilidad pedida es:
P=casos favorables (rubios o rubias)/ total de niños 
P=(7 + 5)/(8 +12 +7 + 5) 
P=12/32 8
P=3/8

9.-
Al lanzar al aire tres veces una moneda, la probabilidad de que en el primer lanzamiento se obtenga sello es: 
Solución: 
No importa lo que ocurra en los dos últimos lanzamientos. Es sólo considerar la probabilidad de que en el primer lanzamiento se obtenga sello. Por lo tanto, la probabilidad pedida es: 
P=cantidad de resultado(s) favorable(s) / cantidad resultados posibles 
P=1/2

10.-
Se lanzó un dado honesto –no cargado- dos veces, obteniéndose 4 en ambas oportunidades. ¿Cuál es la probabilidad de que en un tercer lanzamiento se obtenga nuevamente 4? 
Solución: 
Los dos lanzamientos previos ya no son de interés, dado que se tiene certeza de sus resultados. Solo nos interesa a partir de ello la probabilidad de que en un lanzamiento se obtenga 4. Como hay seis resultados posibles y uno solo favorable, la probabilidad pedida es: 
P= cantidad de resultado(s) favorable(s) /cantidad resultados posibles 
P=1/6